Abstract

Hydrogen sulfide (H2S), along with nitric oxide (NO) and carbon monoxide (CO), proved to have renoprotective effects in various renal diseases. Therefore, this study investigated the renoprotective effect of H2S, in a renal injury model, and its crosstalk with other gasotransmitters such as CO. Thirty-two adult rats were divided into four groups: control, gentamicin (GEN)-treated, GEN + sodium hydrosulfide (NaHS), and GEN + NaHS + zinc protoporphyrin (ZnPP) groups. GEN was used to induce renal injury, NaHS is a water-soluble H2S, and ZnPP is a selective heme oxygenase-1 (HO-1) inhibitor used to inhibit CO synthesis in vivo. NaHS improved kidney functions in the GEN group as evidenced by significantly lower levels of renal injury markers: serum urea, creatinine, uric acid, urinary albumin excretion, and urinary albumin/creatinine. Moreover, NaHS administration to the GEN-treated group significantly lowered renal levels of NO and tumor necrosis factor-α with an increase in total antioxidant, HO-1, and interleukin-10 levels. Furthermore, NaHS administration downregulated the GEN-induced overexpression of the renal inducible nitric oxide synthase (iNOS) and upregulated the suppression of endothelial nitric oxide synthase (eNOS) with improvement in the histological examination and periodic acid Schiff (PAS) staining. However, this improvement in kidney function produced by NaHS was reduced by combination with ZnPP but still improved as compared with the GEN-treated group. The renoprotective effects of H2S can be through its effects on renal tissue antioxidants, pro-inflammatory and anti-inflammatory cytokines, and expression of eNOS and iNOS which can be partially dependent on CO pathway via induction of HO-1 enzyme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call