Abstract
Growing evidence suggests that exposure of plants to unfavorable environments leads to the accumulation of hydrogen sulfide (H2S) and reactive oxygen species (ROS). H2S interacts with the ROS-mediated oxidative stress response network at multiple levels. Therefore, it is essential to elucidate the mechanisms by which H2S and ROS interact. The molecular mechanism of action by H2S relies on the post-translational modification of the cysteine sulfur group (-SH), known as persulfidation. H2S cannot react directly with -SH, but it can react with oxidized cysteine residues, and this oxidation process is induced by H2O2. Evidently, ROS is involved in the signaling pathway of H2S and plays a significant role. In this review, we summarize the role of H2S-mediated post-translational modification mechanisms in oxidative stress responses. Moreover, the mechanism of interaction between H2S and ROS in the regulation of redox reactions is focused upon, and the positive cooperative role of H2S and ROS is elucidated. Subsequently, based on the existing evidence and clues, we propose some potential problems and new clues to be explored, which are crucial for the development of the crosstalk mechanism of H2S and ROS in plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.