Abstract

Hydrogen sulfide (H2S) is a gasotransmitter that has been described to affect the membrane potential of neurons in a number of brain areas. Using whole cell patch-clamp electrophysiological techniques, we investigated the effects of H2S on the membrane potential of neurons in the nucleus of the solitary tract (NTS). Whole cell patch clamp recordings were obtained from 300µm coronal NTS brain slices and bath application of the H2S donor, sodium hydrosulfide (NaHS)(1mM, 5mM and 10mM) was shown to have clear concentration-dependent, reversible, depolarizing effects on the membrane potential of 95% of neurons tested (72/76), an effect which in 64% (46/72) of these responding neurons was followed by a hyperpolarization. In the presence of the voltage-gated sodium channel blocker tetrodotoxin (TTX) and the glutamate receptor antagonist kynurenic acid (KA), these depolarizing effects of 5 mM NaHS (5.0±2.2mV (n=7)) were still observed, although they were significantly reduced compared to regular aCSF (7.7±2.0mV (n=7), p*<0.05, paired t-test). We also demonstrated that hyperpolarizations in response to 5mM NaHS resulted from modulation of the KATP channel with recordings showing that following KATP channel block with glibenclamide these hyperpolarizing effects were abolished (Control −7.9±1.2mV, Glibenclamide −1.9±0.9mV (n=8) p<0.05, paired t-test). This study has for the first time described post-synaptic effects of this gasotransmitter on the membrane potential of NTS neurons and thus implicates this transmitter in regulating the diverse autonomic systems controlled by the NTS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call