Abstract
Hydrogen sulfide (H2S), an endogenously produced gas, is a cardioprotective agent against neurotoxin-induced neurodegeneration in Parkinson's disease (PD). However, the roles of H2S in 1-methyl-4-phenylpyridinium ion (MPP+)-treated SH-SY5Y cells with the involvement of reactive oxygen species-nitric oxide (ROS-NO) signaling pathway in PD remain unclear. For this study, a MPP+-treated SH-SY5Y cell model was established to explore the regulatory role of H2S in oxidative stress injury and cell apoptosis. With the cell viability, apoptosis, cytotoxicity, levels of reactive oxygen species (ROS) and nitric oxide (NO), mitochondrial transmembrane potential (Δψm), contents of oxidative stress injury-related markers (glutathione, superoxide dismutase, malondialdehyde), levels of apoptosis-related proteins (Caspase 3, Bax, Bcl-2) and inducible nitric oxide synthase (iNOS) determined, this study demonstrated that NaHS (an H2S donor) treatment could alleviated the reduction of cell viability and cytotoxicity, cell apoptosis, Δψm loss, contents of ROS and NO, and oxidative stress injury induced by MPP+. The present study showed that H2S may protect SH-SY5Y cells from MPP+-induced injury in PD cell model via the inhibition of ROS-NO signaling pathway and provide insight into the potential of H2S for PD therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.