Abstract

Berberine plays a neuro-protective role in neurodegenerative diseases, including Parkinson's disease (PD). Long non-coding RNAs (lncRNAs) play critical roles in PD pathogenesis. The purpose of this study was to investigate whether LINC00943 was involved in the role of berberine in PD. 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) or 1-methyl-4-phenyl pyridine (MPP+) were used to construct PD mouse and cell models, respectively. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (Edu) assays. Inflammation and cell apoptosis were assessed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. Quantitative real-time PCR (qRT-PCR) was employed to test the expression of LINC00943, microRNA (miR)-142-5p, and karyopherin subunit alpha 4 (KPNA4) mRNA. The protein levels of NF-κB pathway-related markers and KPNA4 were measured by western blot. Oxidative stress level was assessed by corresponding kits. The interaction between miR-142-5p and LINC00943 or KPNA4 was determined via dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Berberine inhibited MPP+-induced injury in SK-N-SH cells by promoting cell proliferation and suppressing inflammation, apoptosis, and oxidative injury. LINC00943 and KPNA4 were upregulated and miR-142-5p was downregulated in PD mouse and cell models. LINC00943 (or KPNA4) overexpression or miR-142-5p inhibition abated the neuro-protective role of berberine in PD cell model. Moreover, miR-142-5p was a target of LINC00943, and KPNA4 could specially bind to miR-142-5p. Additionally, berberine inhibited NF-κB pathway by regulating LINC00943/miR-142-5p/KPNA4 axis. Berberine protected SK-N-SH cell from MPP+-induced neuronal damage via regulating LINC00943/miR-142-5p/KPNA4/NF-κB pathway, highlighting novel evidence for the neuro-protective role of berberine in PD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.