Abstract
In this paper, we investigated the hydrogen storage and electrochemical characteristics of the bcc type Ti0.32Cr0.43−x−yV0.25FexMny (x=0, 0.03, 0.055; y=0, 0.03, 0.055, 0.080) alloys and their composites with the AB5 type MmNi3.99Al0.29Mn0.3Co0.6 (Mm: misch-metal) alloy. The maximum hydrogen capacities of the bcc alloys were proportional to the lattice parameters of the alloys. The increased substitution of Fe/Mn for Cr in the bcc alloys increased the plateau pressure in the respective pressure–composition isotherms. In particular, the plateau pressure was more sensitive to Fe substitution than Mn substitution. Electrochemically, the Ti0.32Cr0.345V0.25Fe0.03Mn0.055 composite alloy electrode showed the optimum discharge capacity and cyclability because it had the beneficial effects of both Fe and Mn substitutions. Furthermore, among the other composite alloy electrodes, the Ti0.32Cr0.345V0.25Fe0.03Mn0.055 composite alloy electrode showed the smallest charge transfer resistance, which allowed its easy activation and, higher rate capability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have