Abstract

Sodium selenite has alleviating effects on liver fibrosis; however, its therapeutic molecular mechanism remains unclear. Herein, hydrogen selenide, a major metabolite of Na2SeO3, was tested to uncouple the sulfilimine bond in collagen IV, the biomarker of liver fibrosis. A mouse model of liver fibrosis was constructed via a CCl4-induced method, followed by the administration of 0.2 mg kg-1 Na2SeO3 via gavage three times per week for 4 weeks. Changes in H2Se, NADPH, and H2O2 levels were monitored in real time by using NIR-H2Se, DCI-MQ-NADPH, and H2O2 probes in vivo, respectively. H2Se continuously accumulated in the liver throughout the Na2SeO3 treatment period, but the levels of NADPH and H2O2 decreased. The expression of collagen IV was analyzed through Western blot and liquid chromatography-mass spectrometry. Results confirmed that the sulfilimine bond of collagen IV in the fibrotic mouse livers could be broken by H2Se with the Na2SeO3 treatment. Therefore, the therapeutic effect of Na2SeO3 on liver fibrosis could be mainly attributed to H2Se that uncoupled the sulfilimine bond to induce collagen IV degradation. This study provided a reasonable explanation for the molecular mechanism of the in vivo function of Na2SeO3 and the prevention of liver fibrosis by administering inorganic selenium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.