Abstract

The treatment and disposal of waste biomass and plastics are of great importance to achieve both waste management and resource recycling. In this work, pyrolysis of biomass and plastic blends were investigated to identify the influence of temperature and in situ CaO addition on the production of hydrogen-rich, HCl-free, and low tar content fuel gases. The results show that the increase in temperature and the use of CaO significantly improved both the quantity and quality of the fuel gas and mitigated the formation of tar compounds and HCl. Moreover, H2 yield was significantly improved from 0.30 to 3.68 mmol/g with the increase in temperature from 550 to 850 °C. Also, the use of in situ CaO significantly increased the H2 yield by 28–88%. The H2/CO ratio was also enhanced from 0.35 to 1.50 with the temperature increase and CaO addition. Tar removal efficiency reached approximately 70.09% with the use of CaO at 850 °C. The produced HCl gas could be effectively absorbed by CaO through dechlorination reactions to form CaClOH at a highest mitigation efficiency of 92.37%. The results could be used to develop clean and efficient treatment technologies of waste biomass and plastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.