Abstract

Cage iron(II) complexes with one, two or six terminal (poly)aromatic group(s), designed for effective physical adsorption on the carbonaceous substrates, were prepared by nucleophilic substitution of their mono-, di- and hexachloroclathrochelate precursors with 3-arene-1(9)-yl-propane-1 thiolate anions. Their cyclic voltammograms contain the single Fe2+/+ reduction wave in the cathodic potential range and two oxidation waves in the anodic potential range, assigned to a metal-centered Fe2+/3+ process and to oxidation of their arylalkylsulfide groups, respectively. Iron(II) hexaphenanthrenylsulfide clathrochelate with six terminal polyaromatic groups was either immobilized or impregnated on the cathode of gas diffusion electrode and its electrochemical activity with regard to hydrogen evolution reaction (HER) was tested in a proton exchange membrane water electrolysis cell for hydrogen production. It was shown that effective immobilization of this (pre)catalyst on the surface of appropriate carbonaceous electrode materials can be successfully used for improving an efficiency of clathrochelate-based hydrogen-producing systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call