Abstract

One such technology is hydrogen-based which utilizes hydrogen to generate energy without emission of greenhouse gases. The advantage of such technology is the fact that the only by-product is water. Efficient storage is crucial for the practical application of hydrogen. There are several techniques to store hydrogen, each with certain advantages and disadvantages. In gaseous hydrogen storage, hydrogen gas is compressed and stored at high pressures, requiring robust and expensive pressure vessels. In liquid hydrogen storage, hydrogen is cooled to extremely low temperatures and stored as a liquid, which is energy-intensive. Researchers are exploring advanced materials for hydrogen storage, including metal hydrides, carbon-based materials, metal-organic frameworks (MOFs), and nanomaterials. These materials aim to enhance storage capacity, kinetics, and safety. The hydrogen economy envisions hydrogen as a clean energy carrier, utilized in various sectors like transportation, industry, and power generation. It can contribute to decarbonizing sectors that are challenging to electrify directly. Hydrogen can play a role in a circular economy by facilitating energy storage, supporting intermittent renewable sources, and enabling the production of synthetic fuels and chemicals. The circular economy concept promotes the recycling and reuse of materials, aligning with sustainable development goals. Hydrogen availability depends on the method of production. While it is abundant in nature, obtaining it in a clean and sustainable manner is crucial. The efficiency of hydrogen production and utilization varies among methods, with electrolysis being a cleaner but less efficient process compared to other conventional methods. Chemisorption and physisorption methods aim to enhance storage capacity and control the release of hydrogen. There are various viable options that are being explored to solve these challenges, with one option being the use of a multilayer film of advanced metals. This work provides an overview of hydrogen economy as a green and sustainable energy system for the foreseeable future, hydrogen production methods, hydrogen storage systems and mechanisms including their advantages and disadvantages, and the promising storage system for the future. In summary, hydrogen holds great promise as a clean energy carrier, and ongoing research and technological advancements are addressing challenges related to production, storage, and utilization, bringing us closer to a sustainable hydrogen economy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call