Abstract

Tetradecahydrophenazine (14HP) is a nitrogen-containing heterocycle compound with a high content of hydrogen that can be released during its dehydrogenation to phenazine (P). The high stability of the 14HP/P pair and relatively low dehydrogenation temperature make 14HP a promising organic hydrogen carrier. This manuscript is devoted to the investigation of hydrogen production by 14HP dehydrogenation over Pd supported on a series of magnesium-aluminum oxides prepared by the aerogel method. This technique made it possible to synthesize catalyst supports characterized by a high surface area and high concentration of surface active sites where active transition metals could be stabilized in a finely dispersed state. The synthesized aerogels had high specific surface areas and pore volumes. A surface area as high as 600 m2/g after calcination at 500 °C was observed for the mixed aerogel with an Mg:Al ratio of 1:4. An increase in the concentration of acidic electron-acceptor sites determined by EPR on the surface of the mixed magnesium-aluminum oxide supports with a high surface area prepared by the aerogel method was found to result in higher hydrogen production due to the faster dehydrogenation of sterically hindered nitrogen-containing tetradecahydrophenazine heterocycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call