Abstract

Proton exchange membrane (PEM) water electrolysis systems offers several advantages over traditional technologies including greater energy efficiency, higher production rates, and more compact design. Normally in these systems, the anode has the largest overpotential at typical operating current densities. By development of the electrocatalytic material used for the oxygen evolving electrode, great improvements in efficiency can be made. We find that using cyclic voltammetry and steady state polarisation analysis, enables us to separate the effects of true specific electrocatalytic activity and active surface area. Understanding these two factors is critical in developing better electrocatalytic materials in order to further improve the performance of PEM water electrolysis cells. The high current performance of a PEM water electrolysis cell using these oxides as the anode electrocatalyst has also been examined by steady state polarisation measurements and electrochemical impedance spectroscopy. Overall the best cell voltage obtained is 1.567 V at 1 A cm−2 and 80 °C was achieved when using Nafion 115 as the electrolyte membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call