Abstract

In this study, gasification of sewage sludge in supercritical water using a batch reactor was investigated. The effects of temperature, retention time, and the oxidation coefficient on gas composition, gas yield, total organic carbon removal efficiency (XTOC), gasification efficiency (GE), carbon gasification efficiency (CE), and phosphorus release rate (Xp) were investigated. The experimental results indicated that the yields for hydrogen, methane, and carbon dioxide increased with the increase in temperature from 380 °C to 460 °C. A maximum hydrogen molar fraction of 55.72% and a yield of 19.86 mol/kg were obtained at 460 °C and 27 MPa after 6 min. The GE, CE, XTOC, and Xp also increased with the increase in temperature. An extension of the retention time promoted the gasification of sludge, thereby resulting in an increase in the hydrogen and methane molar fraction, yield, GE, CE, XTOC, and Xp. Under the conditions of 420 °C and 27 MPa after 6 min, with an increase in the oxidation coefficient from 1.5 to 2.5, the oxidation reaction became dominant in the supercritical water. Hydrogen and methane were converted to carbon dioxide and water with an excess of hydrogen peroxide, which resulted in a lower hydrogen yield. However, the decomposition of organic compounds in the sludge was promoted with the addition of hydrogen peroxide, thereby resulting in an increase in the GE, CE, XTOC, and Xp. When the oxidation coefficient reached 2.5, a maximum GE of 131.6% and Xp of 98.74% were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.