Abstract

In this work, gasification of sewage sludge in supercritical water was investigated in a fluidized bed reactor. Effect of operating parameters such as temperature, concentration of the feedstock, alkali catalysts and catalyst loading on gaseous products and carbon distribution were systematically studied. The results showed that the increase of temperature and the decrease of feedstock concentration were both favorable for gasification, and the addition of catalyst enhanced the formation of hydrogen better. The K2CO3 catalyst could better enhance gasification efficiency and the catalytic activity of different catalysts for hydrogen production was in the following order: KOH > K2CO3 > NaOH > Na2CO3. The maximum molar fraction and yield of hydrogen reached to 55.96% and 15.49 mol/kg respectively with KOH at 540 °C. Most carbon in feedstock existed in gaseous and liquid products, and alkali catalysts mainly promoted the water-gas shift reaction rather than steam reforming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.