Abstract

Hydrogen peroxide is more toxic to mammalian cells at 37 °C than 0 °C at all concentrations studied. Histone-free nuclei (nucleoids) extracted from treated cells have a reduced ability to maintain positive DNA supercoiling, with the maximum effect at the higher temperature. Prior exposure of cells to sodium ascorbate at 0 °C increased both toxicity and the inhibition of nuclear supercoil rewinding. After exposure at 0 °C, normal levels of supercoiling returned with both a fast and a slow component, kinetics characteristic of DNA single-strand break repair; the fast component was eliminated when cells were exposed at 37 °C due to in situ rejoining. At least a portion of the lethal lesions induced by hydrogen peroxide are DNA double-strand breaks (dsb) because the dsb repair-deficient mutant, xrs-5, is approximately two to three times more sensitive than wild-type cells over the initial portion of the survival curve. However, the increased toxicity found after exposure at 37 °C is observed equally in both cell lines, indicating that temperature-dependent cell killing is not directly linked to DNA dsb. It is suggested that cell killing at 37 °C is mediated through two linked processes. First, hydrogen peroxide may disrupt cation-stabilized nuclear supercoiling by direct ion oxidation. Second, as a part of the oxidation process, hydrogen peroxide will produce potentially cytotoxic free radicals close to the DNA-linked metal site, limited in extent only by the presence of chemicals capable of reducing metal ions prior to reoxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.