Abstract

Nitric oxide (NO) is one of the major air pollutants that may cause ecological imbalance and severe human disease. However, the removal of NO faces challenges of low efficiency, high energy consumption, and production of toxic NO2 byproducts. Herein, we report an efficient *OOH intermediate-involved NO oxidation route with high NO3- selectivity via a gas phase photo-Fenton system. Fe single atoms (Fe SAs)-anchored NH2-UiO-66(Zr) (Fe SAs@NU) was synthesized. The five-coordinated Fe SAs undergo a transient structure reconstitution during the photo-Fenton process, which enables a novel heterolytic cleavage pathway of H2O2 to derive specific ·OOH/·O2- radicals as reactive oxygen species. Therefore, a high NO (550 parts per billion) removal rate of 81% (NO3- selectivity up to 99%) is achieved under visible-light irradiation (>420 nm). This study provides new insight for the high-performance photo-Fenton process via a transient structure reconstitution pathway for the removal of gas phase NOx pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.