Abstract

ABSTRACTThe present work investigated the degradation of a dyeing factory effluent by advanced oxidative process under UV irradiation. TiO2 and ZnO were used as catalysts and the influence of different concentrations of H2O2 added to the system was studied. The catalysts were characterized in terms of crystal structure (X-ray diffraction), textural properties (Brunauer–Emmett–Teller area and pore volume) and point of zero charge, which indicated the semiconductors had a positively charged surface in an acidic medium. After 8 h of irradiation at pH 3.0 and catalyst concentration of 0.0625 g L−1, the effect of H2O2 was evaluated by means of kinetic efficiency (rate constants), absorbance reduction (at 284, 621 e 669 nm), total organic carbon reduction and mineralization (in terms of the formation of ions such as and ). Adding H2O2 to the photocatalytic system significantly increased pollutants’ removal, highlighting tests with 1.0 × 10−2 mol L−1, showing higher absorbance reduction and rate constants at 621 and 669 nm for TiO2 and best mineralization rates for ZnO. Ecotoxicity bioassays using Artemia salina L confirmed the treatment efficacy, with effluent lethal concentration (LC50) increasing from 65.68% (in natura) to over 100% after photocatalysis treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.