Abstract

Abstract Hydrogen permeation through cathodically protected and unprotected BS 4360, grade 50D with various surface finishes and coatings was measured over a 12-month period in open seawater and for a subsequent 6 months in marine mud. Cathodically protected, uncoated steel showed the greatest hydrogen permeation, and coated steels showed the least. Nonantifouling coatings showed a rapid deterioration when buried in marine mud, with a significant increase in hydrogen permeation. Overall, the antifouling coating gave the lowest hydrogen permeation in both environments. Results were discussed in relation to possible hydrogen-induced cracking in the use of moveable (“jack-up”) offshore oil and gas platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.