Abstract
Hydrogen is an important resource for realizing the goal of a hydrogen-based society as well as for synthetic organic chemistry. Catalytic dehydrogenation of organic hydrides such as methyl cyclohexane is attractive for hydrogen storage and transportation in terms of reversibility and selectivity of catalytic reactions and hydrogen storage density. We developed a highly active polymethylphenylsilane-aluminum immobilized platinum catalyst (Pt/MPPSi-Al2 O3 ) for dehydrogenation of organic hydrides. Organic hydrides were fully converted into the corresponding aromatic compounds under reactive distillation conditions at 200 °C or under circulation-flow conditions using the Pt/MPPSi-Al2 O3 catalyst packed in a column at 260 °C. The dehydrogenation reaction reached a maximum conversion at equilibrium (ca. 60%) under continuous-flow conditions at 260 °C. This catalytic continuous-flow dehydrogenation was applied to a formal hydrogen transfer from organic hydrides to unsaturated organic substrates under sequential and continuous-flow conditions for practical flow hydrogenation reactions by connecting two different heterogeneous catalysts packed in columns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.