Abstract

Abstract In view of serious environmental problems occurring around the world and in particular climate change caused significantly by dangerous CO2 emissions into the biosphere in the developmental process, it has become imperative to identify alternative and cleaner sources of energy. Compressed hydrogen is being considered as a potential fuel for heavy-duty applications because it will substantially reduce toxic greenhouse gas emissions and other pollutant emissions. The cost of hydrogen will be the main element in the acceptance of compressed hydrogen internal combustion engine (ICE) vehicles in the marketplace because of its effect on the levelized cost of driving. This paper investigates the feasibility of developing a nationwide network of hydrogen refueling infrastructure with the aim to assist in a conversion of long-haul, heavy-duty (LHHD) truck fleet from diesel fuel to hydrogen. This initiative is taken in order to reduce vehicle emissions and support commitments to the climate plans reinforcing active transportation infrastructure together with new transit infrastructure and zero-emission vehicles. Two methods based on constant and variable traffics, using data about hydrogen infrastructure and ICE vehicles, were created to estimate fueling conditions for LHHD truck fleet. Furthermore, a thorough economic study was carried out on several test cases to evaluate how diverse variables affect the final selling price of hydrogen. This gave an understanding of what elements go into the pricing of hydrogen and if it can compete with diesel in the trucking market. Results revealed that the cost to purchase green hydrogen is the utmost part in the pump price of hydrogen. Due to the variety in hydrogen production, there is no defined cost, which renders estimates difficult. Moreover, it was found that the pump price of green hydrogen is on average 239% more expensive than diesel fuel. The methodology proposed and models created in this feasibility study may serve as a valuable tool for future techno-economics of hydrogen refueling stations for other types of ICE fleets or fuel cell vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.