Abstract
Many countries and regions of the world are pursuing aggressive decarbonization policies in the transportation sector aiming to sharply reduce the sales of conventional gasoline and diesel-powered internal combustion engine vehicles (ICEVs). Zero emission vehicles (ZEVs), such as battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs), have zero tailpipe emissions, but still can be considerably more expensive than ICEVs, which is one key factor hampering their wide-scale adoption. Still, many decarbonization roadmaps and plans call for a large ramp up of ZEVs in coming years. For example, the International Energy Agency's aggressive 2DS high H2 scenario estimates 11 M BEVs and 4 M FCEVs sold in 2030 and California has also set aggressive sales targets under its ZEV Mandate. This paper provides a detailed life cycle cost analysis comparison for FCEV versus other vehicle technologies, assuming these international adoption scenarios are implemented using a learning rate approach. Results show that the fuel cell system is the key factor in making FCEV life cycle costs comparable to ICEV costs. With an 18% learning rate, FCEVs are estimated to be cost competitive with ICEVs by 2025, but with an 8% learning rate, this cost-competitive point is pushed out almost 25 years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.