Abstract

The paper presents the results of simulating a beyond design basis accident with regard to radiolytic hydrogen transport and analysis of hydrogen explosion safety in the reactor cavity and in the central reactor hall of the Bilibino NPP. The KUPOL-M code, version 1.10a, is used as the calculation tool for justifying hydrogen explosion safety. The accident under investigation is a beyond design basis accident, the initial event for which is spontaneous travel of two pairs of automatic control rods and a failure of the reactor scram system. The accident leads to the maximum possible release of positive reactivity, mass destruction of fuel elements, and escape of radiolytic hydrogen, as part of the gas mixture, into the reactor cavity and the central hall and further, through the broken windows, into the atmosphere. The calculation results show that no explosive concentrations of hydrogen are formed in the reactor cavity and in the central hall. Therefore, hydrogen explosion safety is ensured throughout the duration of the design basis accident for the Bilibino NPP unit with the EGP-6 reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.