Abstract

The conformation and aggregation behavior of synthetic Alzheimer's amyloid peptides (Abeta) has been investigated using hydrogen-deuterium exchange measured by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. Mass spectrometric fragmentation of deuterated Abeta peptides was carried out by collision-induced dissociation, inlet fragmentation, and post-source decay. In contrast to the C-terminally truncated peptides Abeta(1-40) and Abeta(1-36) showing full hydrogen-deuterium exchange, Abeta(1-42) and the pyroglutamyl peptide Pyr(3)-Abeta(3-42) produced more complex signal patterns resulting from the formation of beta-sheet-structured oligomers having 18-20 strongly protected protons. Using mass spectrometric fragmentation the results show that the reduced isotope exchange of Abeta(1-42) can be attributed to the central part of the chain comprising residues 8-23. This confirms involvement of the hydrophobic binding domain LVFFA in the course of Abeta aggregation and demonstrates that hydrogen-deuterium exchange in combination with mass spectrometry is well suited for structural analysis of monomeric and reversibly associated amyloid peptides using picomole quantities of material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.