Abstract
Nirmatrelvir is a protease inhibitor that is essential for virus replication. Nirmatrelvir is indicated for the management of mild to severe cases of COVID-19 in individuals who are 12 years of age or older. Forced degradation studies of nirmatrelvir were carried out on the drug substance in solid and solution forms, subjecting it to various stress conditions according to International Conference on Harmonisation (ICH) Q1A(R2) and Q1B guidelines. The analytical method was validated as per the ICH Q2(R1) guidelines. The drug substance (nirmatrelvir) was subjected to hydrolysis (acidic, alkaline, and neutral), thermal, photolytic, and oxidative stress conditions. Five degradation products (DPs) of nirmatrelvir formed under hydrolytic (acidic and alkaline) and oxidative (2,2-azobisisobutyronitrile) stress conditions. These degradation products were identified and separated using reverse-phase HPLC on a phenomenex kinetex C8 column (250 mm ×4.6mm ×5μm) with gradient elution. The mobile phase consisted of 0.1% formic acid and acetonitrile, and detection was carried out at a wavelength of 210 nm. Nirmatrelvir and its five DPs were efficiently separated using reverse phase-HPLC. These five DPs were identified and characterized using LC-electrospray ionization (ESI)-Q-TOF-coupled mass spectrometry analysis in the ESI-positive ionization mode. The formation mechanisms of the DPs and the most probable mass fragmentation pathways for both nirmatrelvir and its DPs were elucidated. The developed method demonstrated selectivity, accuracy, linearity, and reproducibility, making it appropriate for quality control of nirmatrelvir and future research studies. Additionally, the physicochemical and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of nirmatrelvir and its DPs were predicted using ADMET predictor software. The toxicity profile revealed that DP2 and DP3 have teratogenic effects while DP1 and DP3 caused phospholipidosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.