Abstract

The combination of electrolysis for hydrogen production, storage, and utilization can be effectively achieved through the use of hydrogen energy storage systems, which are designed for long-distance transportation and storage. This is due to hydrogen being an environmentally friendly energy source. In order to effectively address the current issue of "wind," this article will delve into four facets: electrolysis of hydrogen, storage techniques, fuel cells, and the utilization of hydrogen energy storage. This will enable foster efficient and sophisticated clean energy development and utilization models, and ensure the continual advancement and maturity of hydrogen energy storage. Renewable energy utilization, with its utilization of light waste, is being encouraged to be further developed and utilized. In the context of global carbon neutrality, the energy properties of hydrogen are expected to gradually emerge. As major economies around the world have successively proposed long-term carbon neutrality goals in recent years, it is expected that the energy properties of hydrogen will gradually emerge, and the application fields will gradually expand to power, transportation, construction and other scenarios. In the long run, it is expected to become an excellent form of electric energy storage. Whether in the temporal or spatial dimensions, the power system will be more diverse in the future, and the forms of energy storage will also be more diverse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call