Abstract

Over the last few decades several innovative ideas have been explored in the energy storage areas, ranging in size, capacity, design complexity, and targeted applications. Some of them are designed for large scale power system applications, others for smallor medium-scale renewable energy or hybrid power systems, while the others are designed to perform short-term energy storage ride through for critical infrastructure (communication systems, hospitals, military facilities, etc.). Energy storage has become an enabling technology for renewable energy applications, grid integration and enhancing power quality and stability in the power transmission and distribution, having a great potential to improve power grid quality and stability and to provide an alternative to fossil fuel-based energy generation. The major constraints for renewable energy penetration are the availability, intermittency, and variability, which can be addressed through energy storage. The energy storage choice depends on specific usage requirements, often incorporating several energy storage systems in order to increase system reliability, capacity, and supply security. In the electric power system, the renewable energy promise lies in its potential to increase grid efficiency, reliability, or in optimizing power flows and supporting variable power supplies. The parameters used in comparisons of various energy storage technologies include efficiency, energy capacity and density, run time, costs, system's response time, lifetime in years and cycles, self-discharge, and maturity of each energy storage technology. The most common energy storage technologies include compressed air, pumped hydro, batteries, fuel cells, flywheels, and super-capacitors. The last four are suitable for the medium scale applications. The chapter discussed energy storage technologies and gives an up to date comparative summary of their performances. After completing this chapter, the readers are able to understand the role, importance, configurations and topologies of energy storage systems, operation principles, characteristics, performances, and operation of major energy storage systems used in power systems, buildings, and industrial facilities. Another benefit is that readers are able to understand the critical role and necessity of energy storage systems in power and renewable energy systems, the differences between large-, mediumand small-scale energy storage systems, and how a system is selected on specific applications based on system characteristics and performances. Major energy storage technologies discussed in this chapter are compressed air energy storage, pumped hydropower storage systems, batteries, flywheels, hydrogen energy storage, fuel cells, supercapacitors, and superconducting energy storage systems. Thermal energy storage systems are covered in detail in the next chapter. This chapter provides comprehensive reviews of the energy storage technologies and gives an up to date comparative summary of their performances, characteristics, and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.