Abstract

Compared to conventional hydrogen bonds like (O–H···N, N–H···O, O–H···O, N–H···N), hydrogen bonds involving heavier chalcogens like sulfur, selenium, and tellurium have been considered weaker owing to less electronegativity of these elements. However, various instances exist to prove that these hydrogen bonds (H bonds) are of similar strength of conventional hydrogen bonds, although the nature of hydrogen bonding could be different depending on a combination of electronegativity, polarizability, and dispersion effects. We have presented a plethora of such H bonds that have been investigated over past several decades through high-resolution laser spectroscopy, microwave spectroscopy, and quantum chemical calculations. These H bonds not only play important roles in biological systems, but are increasingly being tuned in nature and strength to construct artificial models that can aid our mechanistic understanding of non-covalent interactions and also help in modulation of activity, detection, and combat of diseases. We have discussed how these interactions could be exploited for applications in crystal engineering, superconductivity, gas capture, and field-effect transistor studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.