Abstract

The existence of C–H···F–C hydrogen bonds in the complexes of trifluoromethane and cyclic molecule (oxirane, cyclobutanone, dioxane, and pyridine) has been experimentally proven by Caminati and co-workers. This study presents a theoretical investigation on these C–H···F–C hydrogen bonds at B97D/6-311++G** and MP2/6-311++G** levels, in terms of C–H vibrational frequency shifts, atoms in molecules characteristics, and the bonding feature of C–H···F–C hydrogen bonds. It is found that in three important aspects, there are significant differences in properties between C–H···F–C and conventional hydrogen bonds. The C–H···F–C hydrogen bonds show a blueshift in the C–H vibrational frequencies, instead of the X–H normal redshift in X–H···Y conventional hydrogen bonds. The natural bond orbital (NBO) analyses show that σ and p types of lone pair orbitals of the F atom to an antibonding σ*H–C orbital form a dual C–H···F–C hydrogen bond. Such a dual hydrogen bonding leads to the proton acceptor directionality of the C–H···F–C hydrogen bond softer. Our studies also show that the Laplacian of the electron density (▽2ρBCP) is not always a good criterion for hydrogen bonds. Therefore, we should not recommend the use of the Laplacian of the electron density as a criterion for C–H···F–C hydrogen bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call