Abstract

The H-bonded complexes of pyridine N-oxide (PyO) with H(2)O, acetic, cyanoacetic, propiolic, tribromoacetic, trichloroacetic, trifluoroacetic, hydrochloric, and methanesulfonic acids have been studied by FTIR and NMR spectroscopy, X-ray diffraction, and quantum chemical DFT calculations. Correlations between vibrational frequencies of the NO stretching and PyO ring modes and geometric parameters of the H-bond have been established. FTIR experiments show and DFT calculations confirm that definite discontinuity is present in the vicinity of the midpoint in the proton transfer pathway. The established correlations significantly aid in the understanding of fine effects such as the isotope (deuteration) effect, crystal-to-solution transition, or criticality of aqueous solutions induced by ionic pairs. Geometric isotope effect in the ionic H-bond aggregate of PyO·H(D)Cl was found to be extraordinary large. Measured FTIR, CP/MAS, and high-resolution (13)C NMR spectra indicate that H-bond in the PyO·HCl complex in polar solvent can potentially be more ionic than in the crystal. Vibrational modes of ionic pairs originating via proton transfer in H-bond complexes can provide new information concerning the interionic interaction and its role in the phase separation and mezo-structuring processes. The results are compared to the relevant data for PyO·HCl complex in argon matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.