Abstract

We have followed by NMR the zero-point energy changes of the hydrogen bond proton in 1:1 acid-base complexes AHB triple bond {A—H···B <-–> Aδ-···H···Bδ+ <-–> A-···H—B+} as a function of the proton position between A and B. For this purpose, the isotopic fractionation factors K between the acid-base complexes AHB + Ph3COD···B –><- ADB + Ph3COH···B, where AH represents a variety of acids and B represents pyridine-15N, were measured around 110 K, using a 2:1 mixture of liquefied CDClF2-CDF3 as solvent. As under these conditions the slow hydrogen bond exchange regime is reached, the values of K could be obtained directly by integration of appropriate proton NMR signals. Using the valence-bond order concept established previously by crystallography, the fractionation factors and corresponding zero-point energy changes (ΔZPE) are related in a quantitative way to the hydrogen bond geometries, the 1H chemical shift of the hydrogen bond proton, and the pyridine-15N chemical shift. The K values are related in a quasi-linear way to the chemical shifts of the hydrogen bond proton, where the slope depends on whether the proton is closer to oxygen or nitrogen. In the region of the strongly hydrogen-bonded quasi-symmetric complexes, which are characterized by a strong hydrogen bond contraction, the variation of K is very small in spite of substantial proton displacements.Key words: NMR, isotopic fractionation, hydrogen bonding, acid-base complexes, proton transfer, geometric isotope effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.