Abstract

Hydrogen atom transfer (HAT) reactions of (tpfc)MnNTs have been investigated (tpfc = 5,10,15-tris(pentafluorophenyl)corrole and Ts = p-toluenesulfonate). 9,10-Dihydroanthracene and 1,4-dihydrobenzene reduce (tpfc)MnNTs via HAT with second-order rate constants 0.16 +/- 0.03 and 0.17 +/- 0.01 M(-1) s(-1), respectively, at 22 degrees C. The products are the respective arenes, TsNH(2) and (tpfc)Mn(III). Conversion of (tpfc)MnNTs to (tpfc)Mn by reaction with dihydroanthracene exhibits isosbestic behavior, and formation of 9,9',10,10'-tetrahydrobianthracene is not observed, suggesting that the intermediate anthracene radical rebounds in a second fast step without accumulation of a Mn(IV) intermediate. The imido complex (tpfc)Mn(V)NTs abstracts a hydrogen atom from phenols as well. For example, 2,6-di-tert-butyl phenol is oxidized to the corresponding phenoxyl radical with a second-order rate constant of 0.32 +/- 0.02 M(-1) s(-1) at 22 degrees C. The other products from imido manganese(V) are TsNH(2) and the trivalent manganese corrole. Unlike reaction with dihydroarenes, when phenols are used isosbestic behavior is not observed, and formation of (tpfc)Mn(IV)(NHTs) is confirmed by EPR spectroscopy. A Hammett plot for various p-substituted 2,6-di-tert-butyl phenols yields a V-shaped dependence on sigma, with electron-donating substituents exhibiting the expected negative rho while electron-withdrawing substituents fall above the linear fit (i.e., positive rho). Similarly, a bond dissociation enthalpy (BDE) correlation places electron-withdrawing substituents above the well-defined negative slope found for the electron-donating substituents. Thus two mechanisms are established for HAT reactions in this system, namely, concerted proton-electron transfer and proton-gated electron transfer in which proton transfer is followed by electron transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call