Abstract

Fatigue crack-growth (FCG) of Ni-based superalloy 718 was investigated under gaseous hydrogen environment (external hydrogen) and uniformly pre-charged state (internal hydrogen). Under external hydrogen, intergranular fracture predominated, whereas dislocation slip-band or twin boundary fracture were prevalent under internal hydrogen. This failure mode divergence encompassed unique characteristics of macroscale FCG response, leading to both cycle- and time-dependent cracking. The intergranular cracking was ascribed to short-circuit diffusion of hydrogen along grain boundaries. Meanwhile, the material’s inherently inhomogeneous deformation mode exerts harmfulness when hydrogen was uniformly distributed inside the specimen, causing slip-bands or twin boundaries to become the weakest links for fracture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call