Abstract

Reverse electrodialysis (RED) is a promising method for harvesting the salinity gradient energy (SGE) between the brine and river water. Many investigations are carried out by using the artificially brine and fresh water, bringing difficulties in reflecting the practical RED performance under the complex influences of feed solutions. This work explores the performance of the RED system for hydrogen and electricity co-generation that is driven by salinity gradient between the actual concentrated brine and natural river water, and compared with the simulative brines and river waters under six testing schemes. The results show both the working current and solutions influence the system performances, including the output voltage, power density, hydrogen production, and energy conversion efficiency. Besides, the effects of salinity gradient of feed solutions are greater than that of the presence of trace multivalent ions and anionic radical in brine. The effective monovalent ion ionic strength is vital. The experimental maximum hydrogen production and power density are 82.12 mL·h−1 and 0.124 W·m−2 respectively at the current is 0.2 A, and the total power reached 0.32 W with the energy conversion efficiency of 25%. The research offers recommendations for harnessing SGE from actual brines and freshwater to produce hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.