Abstract
Around 50% of humankind relies on groundwater as a source of drinking water. We investigated the age, geochemistry, and microbiology of 138 groundwater samples from 87 monitoring wells (<250 m depth) located in 14 aquifers in Canada (Fig. 1). Geochemistry and microbiology showed consistent trends suggesting large-scale aerobic and anaerobic hydrogen, methane, nitrogen, and sulfur cycling carried out by diverse microbial communities. Older groundwaters, especially in aquifers with organic carbon-rich strata, contained on average more cells than younger groundwaters, challenging current estimates of subsurface cell abundances. We observed substantial concentrations of dissolved oxygen in older groundwaters that could support aerobic lifestyles in subsurface ecosystems at an unprecedented scale. Metagenomics, oxygen isotope analyses and mixing models indicated that “dark oxygen” was produced in situ via microbial dismutation. We show that ancient groundwaters sustain productive communities and highlight an overlooked oxygen source in present and past subsurface ecosystems of Earth Ruff et al. 2023). Title, Abstract, and Figure 1 are reproduced from (Ruff et al. 2023) without adaptations, according to the terms of http://creativecommons.org/licenses/by/4.0/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: ARPHA Conference Abstracts
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.