Abstract
Hydrogen absorption behavior into boron films deposited on graphite and stainless steel (SS) has been studied. Hydrogen absorption into a H-depleted boron film was investigated during a hydrogen glow discharge with pressure drop measured by a diaphragm gauge. It was found that, after strong but short time absorption at initial phase, hydrogen atoms were slowly (a few percents of injected H atoms) but continuously absorbed without saturation up to 3 h, which was not observed with SS liner without boron coating. Hydrogen atoms were not only desorbed but also implanted into the film during a helium glow discharge and thus, hydrogen atoms were accumulated in the film when H 2 and He discharges were repeated alternately. These accumulation effects enhanced by ions from the glow discharge were investigated quantitatively and the effect of bombarding ion species (H + or He +) was discussed. Depth profile of H atoms was measured by elastic recoil detection (ERD). The density of only near surface region was increased when the hydrogen atoms were injected. Longer time exposure to H 2 discharge resulted in increase in surface density and shift of the peak position to deeper into the film. These results were explained by diffusion of H atoms due to ion impact into the films with keeping its saturation level if we consider resolution of ERD method of 25 nm. From the results, applicability of boron film as protection layer of tritium permeation is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.