Abstract

The thermal stability and glass transition behaviour of crosslinked poly(N-isopropylacrylamide) [P(N-iPAAm)], poly(methacrylic acid) [P(MAA)], their random copolymers and sequential interpenetrating polymer networks (IPNs) have been investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). P(MAA) shows a two-step process of degradation. P(N-iPAAm) shows an unique process of degradation at higher temperature. Copolymers having higher content in N-iPAAm units have a lower thermal stability than their component homopolymers and show an unique degradation process at high temperature. On the contrary, enriched MAA copolymers show better stability but they exhibit two degradation steps at the main degradation region. Sequential IPN samples exhibit a better stability than their component homopolymers and copolymers. The high temperature backbone degradation occurs in only one step, which indicates the formation of a true interpenetrating network. The T g of the same series of materials has been also measured. A T g vs composition plot of P(N-iPAAm-co-MAA) copolymers presents a S-shaped curve indicating that structural units interact among them through strong specific interactions. For interpenetrating polymer networks, it seems that only one T g occurs indicating a good compatibility and interpenetration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.