Abstract

AbstractThe design of bioactive scaffolding materials with favorable properties is paramount for successful application in biomedical engineering. Polymeric hydrogels attract significant attention as leading candidates for scaffold engineering due to their specific compositional and structural similarities to the natural extracellular matrix. The ability to control porosity, surface morphology, and size of hydrogel scaffolds has created new approaches to overcome various issues in tissue engineering such as vascularization, tissue architecture, and simultaneous multiple cells seeding. This review imparts an overview of hydrogel scaffolds based on synthetic and natural polymeric components (alginate, gelatin, and 2-hydroxyethyl methacrylate). We made hydrogel scaffolds with unique properties. Their in vitro and in vivo biological response, morphology, mechanical properties, porosity, hydrophilicity, and degradability were tested to find optimal patterns of tissue regeneration.KeywordsHydrogel scaffoldsAlginateGelatin2-Hydroxyethyl methacrylateTissue regeneration

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.