Abstract

The sea level rise has its own-bearing on the coastal recession and hydro-environmental degradation of the River Nile Delta. Attempts are made here to use remote sensing to detect the coastal recession in some selected parts and delineating the chemistry of groundwater aquifers and surface water, which lie along south-mid-northern and coastal zone of the Nile Delta. Eight water samples from groundwater monitoring wells and 13 water samples from surface water were collected and analyzed for various hydrochemical parameters. The groundwater samples are classified into five hydrochemical facies on Hill-Piper trilinear diagram based on the dominance of different cations and anions: facies 1: Ca–Mg–Na–HCO3–Cl–SO4 type I; facies 2: Na–Cl–HCO3 type II; facies 3: Na–Ca–Mg–Cl type III, facies 4: Ca–Na–Mg–Cl–HCO3 type IV and facies 5: Na–Mg–Cl type V. The hydrochemical facies showed that the majority of samples were enriched in sodium, bicarbonate and chloride types and, which reflected that the sea water and tidal channel play a major role in controlling the groundwater chemical composition in the Quaternary shallow aquifers, with a severe degradation going north of Nile Delta. Also, the relationship between the dissolved chloride (Cl, mmol/l), as a variable, and other major ion combinations (in mmol/l) were considered as another criterion for chemical classification system. The low and medium chloride groundwater occurs in southern and mid Nile Delta (Classes A and B), whereas the high and very high chloride (classes D and C) almost covers the northern parts of the Nile Delta indicating the severe effect of sea water intrusion. Other facets of hydro-environmental degradation are reflected through monitoring the soil degradation process within the last two decades in the northern part of Nile Delta. Land degradation was assessed by adopting new approach through the integration of GLASOD/FAO approach and Remote Sensing/GIS techniques. The main types of human induced soil degradation observed in the studied area are salinity, alkalinity (sodicity), compaction and water logging. On the other hand, water erosion because of sea rise is assessed. Multi-dates satellite data from Landsat TM and ETM+ images dated 1983 and 2003 were used to detect the changes of shoreline during the last two decades. The obtained results showed that, the eroded areas were determined as 568.20 acre; meanwhile the accreted areas were detected as 494.61 acre during the 20-year period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call