Abstract
We consider the hydrodynamic behaviour of an imploding ICF target. After recalling the requirements for thermonuclear ignition, we analyse in detail the two phases of the implosion. First, the acceleration, with its two important ignition parameters, the implosion velocity and the entropy generated in the DT. Second, the slowing down which, through electronic conduction, allows the creation of a central hot spot of sufficient mass. The method of successive shocks allows the détermination of the laser pulse shape which, by insuring an isentropic acceleration, optimises the energy delivered to the DT. We obtain the implosion velocity as a function of the initial capsule parameters and the maximum incident radiation. We clarify the hydrodynamical reason which makes the ignition threshold sensitive to the entropy generated during the acceleration. These elements constitute the basis of a global indirect drive ICF model, allowing target design optimisation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have