Abstract

Objective of this research is to accurately stimulate the hydrodynamic process in reservoirs thereby summarizing the hydrodynamics in reservoirs and figuring out its impact on the migration, conversion, and concentration of pollutants. For this purpose, this paper employed a 2D unstructured shallow water hydrodynamic model to perform numerical simulation on the flow field of the Yazidang Reservoir, one of the major reservoirs in the Ningxia Hui Autonomous Region of China; grids of shore boundaries in the model were densified to better fit the terrain changes at the boundaries, and the impact of wind field, and inflow/outflow on the flow field in the target reservoir was studied. The research findings suggest that, wind velocity has a great impact on the circulation intensity of the target reservoir, but it has no obvious impact on the circulation structure; the inflow and outflow have a certain impact on the area near the water inlet and outlet, and the range of this impact is related to the size of water volume of the inflow/outflow; under calm wind condition, the flow field of Yazidang Reservoir is entirely determined by the inflow and outflow, but the impact on the area far from the water inlet and outlet is very small, and wind field is one of the decisive factors for the flow field of Yazidang Reservoir. The research conclusions attained in this paper could provide useful theoretical evidences for the water ecological security of Yazidang Reservoir.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.