Abstract

An attempt has been made to study and analyse the hydrodynamic effects of turbulent flow including its pattern and characteristics around three identical circular shaped piers. Experimentation was conducted under clear-water scour condition. Three pier groups were placed with inline and eccentric arrangement in tandem manner on a flume. Two piers were positioned inline along the flow direction and third pier was placed eccentrically in the middle of two inline piers having a transverse distance equal to three times of pier width. Three dimensional velocities were gauged at a horizontal plane located at 4% depth above the zero bed level. The readings were captured in the Cartesian coordinate-system to compute the time-mean longitudinal, transversal and vertical velocities. The hydrodynamic consequences of three piers arrangement near the horizontal bed were investigated. The contour profile and variations of time aggregated mean velocity components, kinetic energy and turbulence intensities are measured or determined and analysed. Velocity vectors and absolute velocity at horizontal plane obtained from velocity measuring areas are utilised to explain further hydrodynamic flow features. The measured depth for scour at equilibrium state for the eccentric middle pier is observed higher than the inline front and inline rear circular piers. The three pier group positioning and the interfering between the circular piers act an important function in flow characteristics and for creating and forming the larger scoured depth around the eccentric middle pier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call