Abstract

The theoretical foundations of construction, mathematical description and engineering calculation of heat exchangers of the serpentine type in blocks of heat-using equipment of tube furnaces and other types of reactors designed for carrying out endothermic reactions (in particular, reforming of natural gas with water vapor) are considered. It is shown that the thermal efficiency of heat exchangers of the coil type is significantly affected by the correct choice of parameters ensuring a uniform distribution of energy flows over the surface of heat-resistant heat exchange tubes. This technological problem is solved by compiling the heat balance and selecting the system of the corresponding equations, which allows to calculate the temperature contour of the coil heat exchanger, its hydrodynamic characteristics and the distribution of mass and heat flows through the heat exchange tubes. The use of the tensor form of the Boussinesq hypothesis is considered, with which the Reynolds equation describing a turbulent flow is transformed to a partial differential equation for a single unknown function and its averaged form is obtained. In relation to the problem under consideration, the correctness of the chosen approach was confirmed both theoretically and experimentally. It is shown that in the core of a turbulent flow with an intense suction or injection, the liquid behaves almost as ideal and the well-known Helmholtz – Friedmann theorem holds with the necessary accuracy. From the aforementioned averaged equation, expressions are obtained that are suitable for describing heat fluxes in channels with suction or injection. According to this theoretical model, thermal calculations of coil-type heat exchangers were carried out, a more accurate assessment of the temperature of the heated medium in each coil tube was made, and the temperature gradient of the external heat carrier over the cross section of the gas duct was found. For the first time in the practice of calculations when choosing the parameters of coils, a number of boundary conditions were taken into account, such as the condition of the coil layout, the necessary heat exchange surface, permissible restrictions on hydraulic resistance, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call