Abstract

Euler hydrodynamics of perfect fluids can be viewed as an effective bosonic field theory. In cases when the underlying microscopic system involves Dirac fermions, the quantum anomalies should be properly described. In 1+1 dimensions the action formulation of hydrodynamics at zero temperature is reconsidered and shown to be equal to standard field-theory bosonization. Furthermore, it can be derived from a topological gauge theory in one extra dimension, which identifies the fluid variables through the anomaly inflow relations. Extending this framework to 3+1 dimensions yields an effective field theory/hydrodynamics model, capable of elucidating the mixed axial-vector and axial-gravitational anomalies of Dirac fermions. This formulation provides a platform for bosonization in higher dimensions. Moreover, the connection with 4+1 dimensional topological theories suggests some generalizations of fluid dynamics involving additional degrees of freedom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.