Abstract

Hydrodynamics and scale-up of liquid–solid circulating fluidized beds (LSCFBs) are investigated using similitude method and computational fluid dynamics (CFD) technique. Similitude method is applied to establish the dynamic similarity among LSCFBs by tuning physical properties of liquids and solids, operating conditions and bed dimensions to match several scaling sets of dimensionless groups. The hydrodynamic behaviors in these constructed LSCFBs are simulated by a validated CFD model [Cheng, Y., Zhu, J., 2005. CFD modeling and simulation of hydrodynamics in liquid–solid circulating fluidized beds. Canadian Journal of Chemical Engineering 83, 177–185] and compared in terms of the axial and radial flow structures characterized by the solids fraction, particle and liquid velocities and solids mass flux. The results demonstrate that only the full set scaling parameters obtained from similitude method, i.e., five dimensionless groups together with fixed bed geometry, particle sphericity, particle size distribution as well as particle collision properties, can ensure the similarity of hydrodynamics in the fully developed region of different LSCFBs. Developing flow structures in LSCFBs are strongly influenced by some parameters such as turbulent kinetic energy at the inlet so that the proposed similitude method may not always be applicable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.