Abstract

Solutions of hydrodynamical equations are presented for an equation of state allowing for a first-order phase transition. The numerical analysis is supplemented by analytical treatment provided the system is close to the critical point. The processes of growth and dissolution of seeds of various sizes and shapes in meta-stable phases (like super-cooled vapor and super-heated liquid) are studied, as well as the dynamics of unstable modes in the spinodal region. We show that initially nonspherical seeds acquire spherical shape with passage of time. Applications to the description of the first-order phase transitions in nuclear systems, such as the nuclear gas–liquid transition occurring in low energy heavy-ion collisions and the hadron–quark transition in the high energy heavy-ion collisions are discussed. In both cases we point out the important role played by effects of viscosity and surface tension. It is shown that fluctuations dissolve and grow as if the fluid were effectively very viscous. Even in the spinodal region seeds may grow slowly due to viscosity and critical slowing down. This prevents the enhancement of fluctuations in the near-critical region, which is frequently considered as a signal of the critical point in heavy-ion collisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.