Abstract
Hydrodynamic tail vein injection (HTVi), also called hydrodynamic gene transfer (HGT), is attracting increasing interest for modeling hepatic carcinogenesis. This highly versatile approach reproducibly provides efficient in vivo transfection of hepatocytes with naked DNA. Here, we give an in-depth description of the injection procedure, which is key for the success of the method. HTVi requires the injection of a large volume of a solution containing plasmids into the tail vein of the mouse. The transient right heart overload created by the injection forces the blood to flow back into the hepatic veins, enlarging the endothelial fenestrae and permeabilizing a fraction of hepatocytes for a few seconds. This results in the uptake of plasmids by the permeabilized hepatocytes, giving rise to their in vivo transfection. Including the Sleeping Beauty transposon system among the injected plasmids leads to the stable transfection of a subset of hepatocytes. HTVi is a powerful technique which enables numerous applications in liver cancer biology, such as a study of oncogene cooperation, of tumor heterogeneity, and interaction with the tumor microenvironment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have