Abstract
In the current paper, we have developed a method, based on 2D+T theory, to model the performance of doubled-stepped planing hulls in asymmetric conditions. We have performed Computational Fluid Dynamics (CFD) simulations to evaluate the difference between the results of the 2D+T method and CFD. We have validated 2D+T and CFD simulations. The quantitative comparison between the results of both methods shows they predict almost similar heeling moment, resistance and trim angle for a doubled-stepped planing hull. Results of non-stepped and doubled-stepped planing hulls are compared against each other, demonstrating that an increase in heel angle has less influence on the performance of the doubled-stepped planing hull. The heeling moment of a double-stepped planing hull is found to be smaller than a heeling moment of a non-stepped planing hull at early planing speeds, but, by the increase in speed, heeling moment of doubled-stepped planing hulls becomes slightly larger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.