Abstract
The object of this study was to obtain data on the radial variation of gas- and liquid-phase mass flux profiles in two-phase upflow in vertical pipelines. Experimental data were obtained on the radial gas-liquid flux, impact pressure, and linear liquid-phase velocity profiles for superficial gas- and liquid-phase velocities ranging from 20 to 125 ft/s and from 5 to 15 ft/s, respectively. Studies were made on 1-in, 4-in, and 8·4-in vertical pipelines and in a 1-in i.d. by 8·4-in o.d. vertical annular flow pipeline. Gas-liquid systems studied were air-water, air-aqueous glycerol, and air-tetrabromoethane. In Part 2 time-averaged radial liquid hold-up and linear-phase velocities were estimated from radial mass flux and impact pressure data. Estimates were also made on the magnitude, frequency, and velocity of the flow disturbances. Empirical correlations for mean liquid hold-up and pressure drop were developed from experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.