Abstract
AbstractExperimental and theoretical investigations on hydrodynamics for gas‐solid particles flow were carried out in a vertical upward converging pneumatic conveying system. One‐dimensional mathematical modeling and simulation were done using the FORTRAN‐95 program. The influence of convergence geometry on the hydrodynamic parameters like particle velocity, gas‐particle slip velocity, pressure drop, and particle Reynolds number (Rep) along the riser were studied. Experiments were conducted using the dilute phase mode with three types of granular cereal seeds of different sizes. Some significant differences in all hydrodynamic parameter profiles along the riser were observed between converging and uniform risers. Enhancement of Rep in the converging riser implies a higher gas‐solid transfer coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.