Abstract

Based on RANS method, this paper studied leading-edge tubercle three-dimensional airfoil, which had effect on hydrodynamic performance of three-dimensional airfoil. Both section configurations of the two three-dimensional airfoil models were NACA0020 airfoil. The research method was numerical simulation. First, the leading-edge profile of the first airfoil model was normal. To get stalling angle of the first model, it analyzed hydrodynamic performance of the first model under different angle of attacks at Re=1.35*105. Then, the second model had a sinusoidal leading-edge profile. The second model chose the same Reynolds number. By comparison the numerical calculation results between the first and the second model, the stalling angle of second model delays 3°than the normal airfoil, and the lift coefficient of the second model increases 11.92% than the normal model. The results have laid the foundation for optimization design of leading-edge tubercle three-dimensional airfoil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call